
MUSBUS: Experiences Using a Terminal Emulator

to Select NAS Computer Systems

E. N. Miya 1 and T. Woodrow 2

Report RND-91-010, July 1991

RND Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 and 2 NASA Ames Research Center, Moffeu Field, CA 94035-1000

MUSBUS: Experiences Using a Terminal Emulator
Computer Systems

E. N. Miya
T. Woodrow

NAS Systems Division
NASA Ames Research Center

Moffett Field, CA 94035
eugene@nas.nasa.gov

woodrow@nas.nasa.gov

to Select NAS

ABSTRACT

MUSBUS [Monash University Suite for Benchmarking UNIX Systems] is a terminal
emulation program to time and "stress" computer system performance. MUSBUS
simulates multiple human users on an interactive computing environment executing a

workload script.

MUSBUS offers benchmark control and stress capabilities lacking in an environment like a

bare operating system. One program simulates user keyboard activity, and another
distributes resource utilization (random or not) during a benchmarking session.

This report documents the qualitative experience and some results of using MUSBUS.
This report discusses the needs, problems, some solutions, and the advantages to this
performance measurement approach. This report is not a guide to using MUSBUS since
that function is better served by MUSBUS documentation [3].

Introduction

The Numerical Aerodynamic Simulation (NAS) Program is the National supercomputer
resource for the aerospace industry. NAS is located at the NASA Ames Research Center
on the San Francisco Bay in the heart of Silicon Valley. Like many labs, NASA Ames has
hundreds of different computer systems. Like many facilities, NAS buys state-of-the-art

support processors and gets the best machines for the dollar measured against a
representative workload.

To accomplish this, NAS develops benchmarks and workloads to select computers. One
representative requirement is processor performance which supports interactive terminal
sessions. Therefore, NAS needs an interactive terminal session benchmark.

MUSBUS

MUSBUS [Monash University Suite for Benchmarking UNIX Systems] is a set of
programs developed by Ken McDoneU [2,3] to control workload-based performance
measurement. The programs emulate a user typing commands with resulting terminal
output. MUSBUS allows a benchmarker to control relevant variables like the number of
users while handling extraneous details. MUSBUS is not a single program, and it gives no
single-figure-of-merit.

MUSBUS is a better benchmarking environment than a bare-bones operating system.
MUSBUS allows a benchmarker to concentrate on issues relevant to performance

measurement rather than be bogged down in shell scripts, resource contention, and other
operating problems. MUSBUS is not perfect; it adds an invasive overhead, and requires
additional time to port, but it is very useful.

MUSBUS, Our Workload, and Everything

Figure 1. Parts of MUSBUS benchmarking.

This simple diagram illustrates three parts of MUSBUS benchmarking. These parts show
where testing problems can appear. New systems under test always have bugs. The
authors found small problems with MUSBUS software, and our workload, called

Workload. nas, has syntactic and semantic portability problems. All three parts must
work lest MUSBUS dies or takes bad data. Despite these problems, NAS is a MUSBUS

convert; emulation has elegance.

2

Major MUSBUS parts

MUSBUS has three components (excluding workload):
shell variables

files: programs and data
directories

Shell variables control workload execution and are found in Makefiles. They allow simple
control of how many users are simulated (e.g., NUSER variable). OSTYPE helps control
portability. Experienced MUSBUS users will control other variables. ITER, RATE,
TTYS, DIRS, SCRIPTS, SHELL, and so forth. The experience using these variables is
deferred to the section on Porting and Using MUSBUS.

Files: Three flies require attention:
1) Makefiles -- Makefiles control MUSBUS, its Workloads, and system portability. They

compile and run the system. MUSBUS's Makefile contains OSTYPE and other variables
which are passed to run. All Workloads require a Makefile as well.

2) Run -- Run is the shell script which executes the Workload. It actually controls the
measurement, times it, and cleans up.

3) *.awk -- Awk reformats output report measurements like timing. Awk keeps MUSBUS
portable and flexible. The choices are set by OSTYPE shell variable.

Additionally, a fourth program may interest the user:

4) Keyb -- Keyboard simulation -- Keyb reads an input script and meters the script out at a
specific, adjustable speed. Keyb is a simple simulation of a human typist. Keyb implicitly
controls the shell command execution rate and the explicit input rate for interactive
commands like text editors.

New MUSBUS users can skip the details of advanced commands executed in the run
script. Advanced commands include:

Mkscript -- make workload scripts -- Mkscript takes a script, master workload and

permutes duplicate scripts [named script. 1, script. 2, ...]. Job steps in these
scripts are executed in random order. This distributes processes using locks and files
further reducing contention.

Makework -- generate work -- Makework controls the execution of a simulated user
running a workload script. It sets up the execution environment and runs the keyb
program's implict shell control.

Most MUSBUS users do not require changing these commands, but we did debug them.

Directory structure is simple:
Workload contains executables, data, and control information for a single simulated user

running a Workload. Multiple copies are made and nm. The workload is specified by the
script.master and Makefile. A default Monash Workload provides testing and debugging.
Two additional workloads come with MUSBUS to simulate "text processing" and "stress."

Tmp contains subdirectories to simulate users. This isolates the workspace of simulated
users. The permutations of the workload can spread the work.

Result contains timing and command logs. A quick view of the MUSBUS shows:

BSD4v2time.awk BSDtime.awk Groan* Intro.lp

Intro.nr M.apollo M.att M.dec risc

M.hp M.ibmrisc M.mips M.mot
M.sun M.vax MAKE* Makefile

README.SPEC README.orig SysVtime.awk TEMPLATE

Tmp/ Workload/ cctest.c check.sed

cleanup* clock* clock.c clock.c.sv
fixPATH* fs.awk getwork.c iama!ive*

iamalive.c keyb* keyb.c limit*
limit.c makework* makework.c makework.h

mem.awk mkperm* mkperm.c mkscript*

mkscript.out* musbus.l result/ run.spec*

signature* time.awk ttychk* ttychk.c
util.c work.c*

Spec_cailynom: theexecutables _enomdusing'*'andthedirectodesarenoted'f. A
sample Workload contains:
DESCRIPTION cleanstderr* edscr2.dat script.3

Makefile dummy.c grep.dat script.4
cat.dat edit.dat script.l script.master*

cctest.c edscrl.dat script.2 script.out

What MUSBUS does

The MUSBUS program does six basic functions:
1) Checks single-copy, workload execution
2) Meters output volume and rate
3) Prepares simulated user directories
4) Waits one minute
5) Runs a test based on desired test conditions

6) Cleans up

MUSBUS first runs a single copy of the master script to syntax check and size output. If
the workload has an error, MUSBUS stops, drops error messages into "script.out.bad"
and "results/log."

If the single copy workload is successful, MUSBUS creates individual test user directories
in Tmp. Prior to full workload execution, MUSBUS waits sixty seconds to stabilize
system activity.

MUSBUS then forks simulated user processes (controlled by the keyb command). Each
user executes a prologue before executing a randomized workload (randomized
script.master). The prologue contains commands requiring some priority (like global
variable initialization).

Lastly, the MUSBUS workload epilog cleans and removes the temporary directories
created before the test. Timing and error messages are stored in result/log files. MUSBUS
concatenates runs, KENBUS clobbers old runs.

4

The NAS SPS Workload

NAS must provide front-end support to supercomputer users. This requires intensive UO
and character processing performance for editing, network communcation, and some f'de
storage. The support is not floating-point intensive, but users still need good price
performance. A support processor must compete favorably with a modem single-user
workstation.

A support processor system must serve 1600 users, and a given computer may handle 100-
200 users peak. The number of processors and their speed can vary, but each user requires
between 10-20 MBs of disk (16..32 Gbytes total). A workload to simulate 128 users (a
lot) was selected.

Work load. nas was built after a one week observation period of daily command logs on

existing support processors. Real workload data was collected using BSD sa(8) and
Amdahl UTS acctcom(8) in preparation for a representative workload, work 1 oad. n a s
was proportioned to match the real workload.

The following table shows the ten most frequently executed commands per processor by
relative frequency. The last entries are the ten most frequently executed commands in the
MUSBUS Workload. has. Note that MUSBUS most closely matches the load on the

host prandt i.

amelia

i_gxma _u_
14.3 test

ii. 3 echo

5.6 csh

3.8 grep
3.4 sh

3.4 gethome
3.2 rm

3.1 cron

3.0 awk

2.9 rcp

fred

31.6

81
7 3

5 7

5 0

3 3

3 0

2 7

2 2

2 1

orville

test 14.0 csh

csh 9.1 sendmail

echo 7.9 cron

awk 7.4 sh

grep 4.9 awk
sed 3.9 echo

expr 3.4 test

cron 2.9 grep

sh 2.6 Ipd

hostname 2.6 expr

54.0 71.0 58.7

wilbur

12.8 csh

6.8 cron

6.7 sh

6.1 echo

5.4 sendmail

4.2 grep

4.0 expr
3.0 date

2.9 test

2.7 rm

54.6

prandtl

7.4

71

56
46

46

43

43

38
36

30

48.6

MUSBUS

L_._ cmd
sendmail 10.0 mail

sh I0.0 csh

sed 9.0 sh

cat 8.0 rcp

rm 8.0 pwd

basename 6.0 date

date 6.0 sed

awk 5.0 awk

rcp 5.0 basename

pg 5.0 rm

72.0

Some workload commands require data, so reasonable simplifications are required
generated, for example:
man(l) asks for the sh(1) man page. Seemed reasonable; until a system without an sh man

page was found.
Mail's input is a 20-line fide (our simulated user sending his latest discovery to a colleague).
The workload has one edit (ed for a variety of reasons since this test is keystroke-bound).
The workload has token compilations.
Size is a distinguishing feature of program text for editing, compilation, and even copying.
A typical CFD program (ARC2D, part of the PERFECT Club Suite) contains 16,000 lines
of code (0.5 MB). Simulating 128 users editing a code this large is non-trivial. Systems

under test required lots of disk.

The command mix is placed into "script.master" in Workload. nas which is also filled
with data and non-system commands. The complete
Workload. nas/script, master is listed in Appendix A. MUSBUS tries to execute
and count commands, but it miscounts

1) shell variable initializations
2) pipe commands
3) indirectly executed commands (in shell scripts or forked e.g.,
sendmail).

This accounts for the difference between the final process count between the

script .master and result/log:

Workload script profile: shell=/bin/sh

62 commands (header:3 & trailer:2)

freq command freq command freq command

9 mail.csh 6 rcp 6 rm

5 cat 5 sed 4 awk

4 date 3 basename 2 is

2 ping 2 pwd 1 chmod

1 comp.sh 1 echo 1 ex

1 export 1 find 1 grep

1 man 1 mkdir 1 printenv

1 rsh 1 set 1 sort

1 touch

Porting and Using MUSBUS

MUSBUS ports like any other program: First copy it. Edit as needed. Compile (type
make). Test it. If the program dies or produces bad results, repeat the last three steps.
Adapt for local use (edit workload, debug, and test). Using MUSBUS was actually fun,
because it was:

1) easy to use
2) easy to modify (well-structured and modular)

3) easy to debug (usually fairly simple)
MUSBUS's design makes it impresswe.

MUSBUS's modularity is perhaps the most impressive part of the system. Superb

portability is attained by awk programs, shell variables and scripts. The C, shell, and
awk programs have the right functionality to minimize run time overhead yet give flexibility

and power. A benchmarker can isolate and modify these scripts as needed.

A barebonesoperating system requires benchmarkers to write their own scripts. Subtle
UNIX differences on every machine force debugging customization. This burns
development time. MUSBUS covers these subtle portability and reliability problems.
Viewing the issues in detail:

File copying: Our fLrst problem is simply moving MUSBUS and its workloads to the
system under test. Electronic mail, network file transfer, or tape are used. In our
experience, one vendor had a byte ordering problem which took additional time to filter.
Nothing is quite as simple as it seems.

Editing: The only significant pre-compile editing is setting a Makefile shell variable
OSTYPE. Setting OSTYPE to SysV or 4BSD simplifies portability using awk scripts.
Vanilla UNIX systems are handled this way. Exceptions are fairly easily edited, for
instance, the t/me(l) command on a Cray Y-MP includes extra fields detailing the "clock
period" count. The file time.awk is easily edited to handle this.

Compilation: Just type make. This usually works. Default parameters should execute one
iteration of a one user default Workload.

Test run: A single command called run handles details or make can call run.. MUSBUS
comes with three test workload directories: Workload, Workload. text, and

Workload. stress. Moving (renaming) directories or setting a workdir variable in
the Makefile selects the test environment. If a benchmarker lives a clean life, MUSBUS is

ready.

Debug problem: Subtle system-under-test variations might prevent first time execution.

The run shell script has a subtle inconsistency across different systems. A problem
iterating runs counts n or n-1 iterations. Some systems run three iterations when others
would run two. A semantic inconsistency exists across systems. This bug was not tracked
for lack of time, so quick hack ran one iteration. Similarly, value lists, or ramps, did not
work on some systems, so each data value was run "by hand."

C program initialization was a problem for one structure field in getwork0. Only one
machine found the lack of explicit initialization to 0, but it could prove serious. Another
problem was that awk scripts did not read hour-long benchmarks. Fortunately, most
MUSBUS problems were attributable to workloads or shell variables.

McDonell advises debugging with nusers=l and iterations=l. This is useful, and it
also helps to create a nearly empty workload for debugging, perhaps containing one simple
command like echo. An empty workload debugs and executes faster than the default
Workload.

Repeat compilation and test until MUSBUS works.

Adapt for local use: Use Workload. nas. The problems are syntactic and semantic.
Once the workload is running, the focus is shell variable control. MUSBUS attempts to
run a single copy of a workload prior to taking a measurement. If a workload fails, it
places information into "script.out.bad" in the workload directory. (Nice touch.)

Syntax problems: workload syntax problems require exposure to a real system.

7

Commandslike
ping 1 1 $host

or

ping-cl -sl $host
behave inconsistently across systems.

Semantic problems: permission and security present a clash of problems. One vendor had

a strange uraask setting (i.e., 153).

Benchmarkers do not encounter all problems on small-scale runs. Larger runs require root
permission to exceed the per user process limit, but workloads containing network
commands, e.g., rcp, fall into a testing twilight zone. Root isn't just any user, and many
systems prevent root from rcping.

Simulating many users tends to fill file systems (i.e., mailboxes overflow); simulated users

doing simulated editing require really big files to edit./tmp requires adequate storage.
This is a system-under-test problem, but it can cause MUSBUS failure.

Extensive I/O is a problem. MUSBUS is designed to handle this beautifully, but we
redirected test output to/dev/null during measurement for between-sy.stem consistency.
Most SPS work is I/O bound. Thus time is the only measured quantity (real, CPU, system

and user).

Once these problems are solved, the really interesting measurement problem begins. The
user load (NUSERS) is the first interesting variable, and the benchmarker can vary this to
his or her heart's content. We use other MUSBUS control variables including:

NSCRIPTS, ITERS, DIRS, TTYS, and RATE.

NSCRTPTS improves workload permutation. This helps resource sharing by spreading the
users across different workload steps (processes).

TTERS was set to '1' after learning workload duration. Individual timing did not vary

significantly in our tests.

D IRS spreads files across multiple disks and thus balances some of the UO load. This is
useful for tests requiring storage.

TTYS is the most interesting variable. Directing output to/dev/null during
measurement achieves greater consistency between systems. During development,
however, output was directed to as many as eight real or pseudo-terminals. TTYS is useful
and interesting terminal benchmarks can use this variable.

RATE (characters per second of simulated typing) is useful for debugging. RATE=8 allows
faster command execution over the default 3 cps.

Tuning MUSBUS for the System-Under-Test

Workload. nas is an extremely difficult workload for simulating 128 users.

Workload. stress is light compared to Workload. nas. Workload. nas does not
run on UNIX systems lacking sufficient hardware and tuning. System performance tuning

falls into two categories: machine-independent and machine-dependent tuning.

8

Machine-independent tuning is possible with a common operating system, but default
environmental assumptions vary widely. Workstation vendors do not tune for 128 users

on their machines. Every vendor increased process table size (the NPRO¢ parameter). A
similar adjustment is the open-file table size (NF ILE). This information is easily shared
between vendors, and these are examples.

Machine-dependent tuning usually implies a multiprocessor architecture. Multiprocessors
have unique architectures. Tuning was not easily shared between vendors. For instance,
the SG I 4 D-3 8 0 "Predator" had constants governing "spin-locks" which are not likely to

be found on other processors. Vendors suggested adjustments, and the benchmarkers
noted changes.

Finally, hardware configuration also contributes to performance. Vastly differing I/O
systems produced striped and non-striped file systems. At best, our decisions attempt to
favor the highest possible performance.

Interpreting the Results

Vendor specific results appear in Appendix B. McDonell provides some guidance for
interpreting results. He suggests taking elapsed time and dividing in the user load. The
NAS SPS workload must run a heavy user load. The selected NUSER input ramp was

1 2 4 8 12 16 24 32 40 48 56 64 80 96 112 128 users.

From this domain, a range of MUSBUS measurements was made.

Elapsed time for a complete workload run is the first MUSBUS measure. A benchmark
can determine average command execution time or execution time per user. These plot the
number of commands executed per second against the number of simulated users on a DEC

VAX 6000 multiprocessor. Appendix section B.2 shows results for an SGI 4D/380 with
an awk script bug.

Conclusions

A separate, detailed market survey [4] is available describing tested systems. This short
report concentrates on observations and experiences using MUSBUS to simulate user
activity (terminal emulation) in a time-shared environment. The report draws three
conclusions:

The value of terminal emulation
Terminal emulation is a useful method for controlling benchmarks and workloads. It is
useful for interactive, time-sharing environments like workstations and medium-sized
mainframes where users simultaneously execute many commands.

The value of MUSBUS
MUSBUS offers better control compared to a bare operating system or other terminal
emulators. It has simple resource management, workload and shell variable control. A
benchmarker concentrates on measurement detail rather than a complex control program.

9

The value of the NAS SPS Workload

The NAS SPS Workload adequately describes our need for a support processor in 1991,
but the workload has limited value after our procurement. Our workload was developed
after a mere week of coarse sampling. Representativeness deserves some place over
expedience. This workload lacks floating-point, uses few compilations, and consists of
UNIX utilities. This is what our support processors do. The workload ran without
terminal I/0 for consistency. Our actual workload will without a doubt change.

The one observed distressing problem is social rather than technical. Many benchmarkers
are dependent on the standard default Workload. This Workload was developed for
McDonelrs Monash University. More Workloads are needed to provide more experience.
Their development requires long-term, high-quality monitoring. Other sites should develop
their own workloads rather than use NAS SPS or Monash's. Ken McDonell notes that
Monash University fully instrumented their bin directories to capture all parameters. These
kinds of studies are needed.

One last piece of advice to benchmarkers: make certain that results measured remotely are
duplicated on delivery.

10

References

[1] David Hinnant, "Performance Measures," UNIX Review, vol. 8, no. 12 (December
1990), pages 34-40.

[2] Ken J. McDoneU, "Taking Performance Evaluation out of the "Stone" Age,"
Conference Proceedings Summer 1987 Usenix Meeting, Phoenix, AZ, 1987.

[3] Ken J. McDonell, "An Introduction to the Monash Benchmark Suite (MUSBUS),"
Technical Report, Monash University, Clayton, Aust., May 1988.

[4] Thomas Woodrow, "Support Processing Subsystem/Scientific Analysis Subsystem
Market Survey," TR RND-91-002, January 1991.

[5] FIPS. Guidelines for Benchmarking ADP Systems in the Competitive Procurement
Environment, FIPS PUB 42-1, US. Department of Commerce, National Bureau of
Standards, May 1977.

11

Appendix A. Workload. nas/script .master

%W% /bin/sh -ie

PATH=XXX:$PATH:/usr/local/lang:/usr/etc:.

suf='pwd"

suff='basename $suf"

remote=radon

mailtarget=eugene

export PATH remote mailtarget suff

mkdir /tmp/$$ tmp

touch tempfile

%

%% 1 edit

%

date

mail.csh $mailtarget

keyb edscrl.dat I ed arc2d.f

%

%% 2 chmod, rm

%

chmod u+w tempfile

rm tempfile

basename "pwd"

mail.csh $mailtarget

%

%% 3 man, rm
%

man sh > /tmp/shell.man$suff 2>/dev/null

rm /tmp/shell.manSsuff

mail.csh $mailtarget

%

%% 4 nroff, ping
%

% nroff -man /usr/man/manl/sh.l > /dev/null

ping -cl -sl Sremote

mail.csh $mailtarget

%

%% 5 ping, rcp stuff

%

ping -cl -sl $remote

rcp mflops90.f $remote\:/tmp/dummyl.$suff

rcp $remote\:/tmp/dummyl.$suff dummyl

rcp mflops90.f Sremotek:/tmp/dummy2.$suff

rcp $remotek:/tmp/dummy2.$suff dummy2

rcp linpackd.f $remote\:/tmp/dummy3.$suff

rcp $remote\:/tmp/dummy3.$suff dummy3

is -CF

% diff ./arc2d.f ./dummy.arc2d >/dev/null

rsh $remote -n rm /tmp/dummyl.$suff /tmp/dummy2.$suff

/tmp/dummy3.$suff < /dev/null

rm dummyl dummy2 dummy3

mail.csh $mailtarget

%

12

%% 6 date, awk, sed

%

date

awk '{print $0}' mflops90.f > /dev/null

sed -e '/^[Cc]/d' mflops90.f > /dev/null

mail.csh $mailtarget

%

%% 7 cat + rm

%

cat mflops90.f > ARC2D.F

rm ARC2D.F

mail.csh $mailtarget

%

%% 8 awk, cat, tr, grep, wc, sed

%

awk '{print $0}' mflops90.f > /dev/null

cat mflops90.f i tr a-c A-Z l grep '^C'

sed -e '/^[Cc]/d' mflops90.f > /dev/null

mail.csh Smailtarget

%

%% 9 compiles
%

which f77

which cc

comp.sh
%

%% i0 basename, pwd, date, cat and rm

%

basename "pwd"

date > date.out

cat date.out

rm date.out

%

%% Ii pwd, is, diff
%

pwd
Is -CF

% diff ./linpacks.f ./linpackd.f > /dev/null

%

%% 12 sort, find

%

sort sortfile > /dev/null

find /tmp/ivl -name passwd -print

%

%% 13 grep, sed

%

sed -e '/^[Cc]/d' mflops90.f > /dev/null

%

%% 14 awk, sed, is

awk '{print $0}' mflops90.f > /dev/null

sed -e '/^[Cc]/d' mflops90.f > /dev/null

%

%% 15 awk, sed

%

I wc -i

13

awk '{print $0}' mflops90.f > /dev/null

sed -e '/^[Cc]/d' mflops90.f > /dev/null
%

%% 16 cat, grep

%

cat mflops90.f i tr a-c A-Z J grep '^C' i wc -i

grep '^C' mflops90.f > /dev/null

%

%% 17 status

%

set

printenv

pwd

basename "pwd"

date > date.out

%

%% 18 mail

%

mail.csh $mailtarget
cat mail.csh >/dev/null

%

%%

rm -rf tmp /tmp/$$
echo "***** All Done *****"

14

Appendix B. Vendors Tested

Vendors tested for the SPS were noted for

1) communication ease (data transfer)
2) ease to reboot
3) ease of reconfiguration
4) other problems/solutions/observations
See the market survey by Woodrow for more specific details[4]. The order presented here

is chronological.

B.1 Convex C-220
A Convex C-220 was made available at the San Jose sales office. Standalone evening runs
were made with Convex staff assistance. MUSBUS was initially transferred on tape, but
electronic mail was possible for simple file fixes (although it took a better part of a day to
arrive). Full Internet connectivity is now available.

The first problem encountered was a umask variable which differed from protection in an
open scientific environment. The Convex machine had industrial, commercial users on the
machine during the day. This prevented full-scale daytime testing.

The operating system was modified for benchmark tests with increased kernel constants.
Separate high-speed disks were added for our tests, and a symbolic link was used for a
large/tmp area.

Convex staff helped the SPS team solve a workload problem which appeared on some
systems. One of our workload's remote commands, an rsh [or rmsh on some systems
(e.g. syntax inconsistency)], required the "-n" option on affected systems to direct any
output to/dev/null.

15

Convexpages

C

m

d

S

/

E

1

a

P

$

Commands per Elapsed second for a Convex C220

5.00

4.50

4.00

3.50

3.00
,nnm'n_'n_,

2.50
2.00
1.50 _ " *_"

e / _m_

d 1.00

0.50

s 0.00

_'n_ut- -'----- n --

e 0 2O 40

C

60 80

Simulated Users

100 120

0.20

Iio,1
0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

140

System

.m- User

Commands per Elapsed second per Simulated User for a Convex C220C

m

d 0.20

s 0.18 I

/ 0.16

E 0.14

1 0.12

a 0.10 Imm-'_t"_

0.08

0.06

0.04

0.02

0.00

Ill

--w. u __

--m- m

0 20 40 60 80 100 120 140

Simulated Users

16

B.2 Silicon Graphics 4D-380

The SGI 41:)/380 is perhaps one of the easiest systems to test. The factory is physically
close, and the machine is in a development environment like the NAS. We have access to
other SGI machines as well, several 4D/340s for debugging, an Internet gateway which
allows access back to Ames for files or communication.

We can reboot the SGI machine any time. It has interesting performance tuning and
measurement tools. SGI has several people to help tune systems, isolate the local area
network, etc. Testers can make operating system tuning changes when necessary. SGI is
very helpful. They have a large staff with MUSBUS experience, and we spent time talking
to half a dozen people in three or four different groups using MUSBUS.

The SGI came close to completing the SPS workload, but frequently died during long tests

leaving many asynchronous sendma±l processes after terminating. The SGI also
exhibited inconsistent problems formatting the output to the time.awk scripts. Beyond 64-
users, timing data became "noisy." We did not have time to stop and analyze this problem
but will inform SPEC and McDonell of the problem. (See the last paragraph in this
section.)

Operating system configuration is a problem at SGI. Near the f'mal test, we nearly received
an absolutely "clean" machine off the assembly line with perfectly clean disks. While we
were making our modifications, other groups were also benchmarking. The combined
effect and loose configuration control which allowed any-time reboots, also make
configuration control nearly impossible. This is a perfect example of "mixed blessing."

Notice a test anomaly in the data. After the test, a problem with SysVtime.awk was
discovered which did not handle hour-long benchmarks. This problem was solved by
changing the awk script. SPEC had independently also found this problem. The noisy
data point was due to a floating-point overflow (division by zero) of improper timing.

17

SGI results

c

m

d 5.00

s 4.50

/ 4.00

E 3.50
1 3.00
a

2.50
P

2.00
s

1.50
e

d 1.00
0.50

S 0.00

Commands per Elapsed second and CPU second for an SGI 4D-380

0 20 40 60 80 100 120

Simulated Users

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

140

•0- System

-i- User

C

m

d

S

/
E

1

a

P
S

g

d

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Commands per Elapsed second per Simulated User for an SGI 4D-380

g'll II • B*i

0 20 40 60 80 100 120

Simulated Users

140

18

B.3 Sotbourne
A two-processor Solbourne system was delivered to our machine room on the same day a
SPEC meeting was held at MIPS. Solbourne was the first machine to complete test and
measurement of our workload. This gave confidence that we could simulate 128 users.

The machine died when ramping, because it would run out of diskspace [for mail], but
individual tests ran fine. The owner of our particular CPU was coincidently attending the

SPEC meeting and was quite knowledgeable about MUSBUS. He was an immense help.

Later, an 8-CPU machine in Colorado was made available to us via phone line. It was

possible to reach their Intemet gateway if we needed files or returning results. Reboots
were easy considering the physical distance to the machine. We fell back to a front-end
machine until the reboot was over. Noisy telephone lines sometimes made work difficult.
The Internet was an excellent facility for Solboume tests, but like Sihcon Graphics and

MIPS, they had a one-way gateway, i.e. communications out of Solbourne was acceptable,
but communications into Solbourne was not.

19

Solboume results

c

m

d 5.00

s 4.50

/ 4.00

E 3.50
1

3.00
a

2.50
P

2.00
S

1.50
e

d 1.00

0.50

s 0.00

e

c

Commands per Elapsed second and CPU second for a Solbourne 5/908

iin-i_,
i m-m,,_ j...,_ r'l _ _ I'! I-I m"l

/ _am_mt. -

0 20 40 60 80 100 120

Simulated Users

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

140

System

-'-User

C

m

d 0.2

Commands per Elapsed second per Simulated User for a Solbourne 5/908

s

/

E

1

a

P
S

e

d

S

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-""m_,,,,,_m__!,,,"

_N_NL

0 20 40 60 80

Simulated Users

100 120 140

20

B.4 Alliant FX-2812
The Alliant computer was reached via telephone lines. A service office exists locally, but
the sales force has an office in Los Angeles with the benchmarking machine located in
Massachusetts. The Alliant staff made kernel changes and reboots, and later did some of
the testing. Sending mail files around occasionally proved difficult. To date, some mail
never reached Ames.

21

AUiant results

C

m

d 5.00

Commands per Elapsed second and CPU second on an Alliant FX2812

s 4.50

/ 4.00

E 3.50
1

3.00
a

2.50
P

2.00

s /e 1.50 X

d 1.00 nU_nnk
0.50 _m_m

S 0.00 -- t" mm_"" 1% _ % i "'" i _

e 0 20 40

mll

60 80

Simulated Users

100 120

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

140

C

m

d 0.2

s 0.18 I

/ 0.16

E 0.14

1 0.12

a 0.1 i'n--i"'a_u_
P

0.08
S

0.06
e

d 0.04

0.02

s 0

Commands per Elapsed second per Simulated User on an Alliant FX2812

20 40 60 80 100

Simulated Users

120 140

22

B.5 IBM RS/6000-320 and -530
At first, IBM loaned us an RS/6000-320 for benchmarking. We did more operating system
debugging than testing on this machine. Later, a model -530 was given to a NAS user and
we were allowed access for local testing and development. The final test was on a model
530 at IBM's sales office in San Jose. All files were moved by caruSdge tape. A byte-

order problem required filtering all files through "dd conv=swab" (to or from NAS).
Reboot was a simple button push.

The software improved from the earlier 320 versions of AIX. All AIX versions had IBM's
new shadow security system. The disk hardware made screeching noises during the
benchmarks and reboots. A special IBM program is used to configure and tune the system.

The local sales office involved other IBM Divisions: the RS/6000 development group in

Austin, the IBM RS/6000 SPEC representative, and even the IBM 3090 supercomputer

group. This latter group asked for copies of the NAS SPS workload for their use. In their
words: "We want this workload, because it is perhaps unique in the world being one of the
few UNIX based workloads on any mainframe or supercomputer."

23

IBM results

C

m

d

s

/

E

1

a

P

S

e

d

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Commands per Elapsed second and CPU second for an IBM 6530

unmmmu

\

0 20 40 60 80

Simulated Users

100 120

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

140

C

m

d

S

/

E

1

a

P

S

e

d

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Commands per Elapsed second per Simulated User for an IBM 6530

ii i ,,,_1\

0 20 40 60 80 100

Simulated Users

120 140

24

B.6 MIPS 6000
The MIPS 6000 is a uniprocessor, but unlike the other machines in this survey, it was the
only ECL-based (rather than MOS) system. The system is a very fast single CPU. File
transfer and remote login are possible through the MIPS gateway machine.

MIPS ported MUSBUS and our workload as well as system tuning. MIPS personnel also
ran the tests since 6000 CPUs were a scarce commodity.

25

MIPS results

C

m

d

S

/

E

I

a

Commands per Elapsed second and CPU second for a MIPS 6280

5.00

4.50

4.00

3.50 _ _'-I_----_ _3.00

2.50

s
1.50

e / :\d 1.00
0.50 "_"

s 0.00 _]a "'.,,,.,,..._

e 0 20 40 60 80

c Simulated Users

100 120

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

140

43- System

"'- User

C

m

d 0.2

Commands per Elapsed second per Simulated User for a MIPS 6280

s 0.18

/ 0.16

E 0.14
1

a

P
s

e

d

0.12

0.1

0.08

0.06

0.04

0.02

0

IIl--I_i_

20 40 60 80 I00

Simulated Users

120 140

26

B.7 SUN 4/490
Several local NAS machines are available. SUN is planning an entry-level multi-

microprocessor (SUN MP) sometime this year. An existing SUN CPU is included for
comparison purposes.

27

sun490 results

C

m

d

S

/

E

1

a

Commands per Elapsed second and CPU second for a Sun 4/490

5.00

4.50

4.00

3.50

3.00

2.50
p _'"',.

2.oo % _a-,s 1.50

0.50 _-,,,

s 0.00

e 0 20

C

40 60 80 100 120

Simulated Users

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

140

C

m

d 0.2

s 0.18

/ 0.16

E 0.14
1 0.12

a 0.1

P 0.08
S

0.06
e

d 0.04
0.02

s 0

Commands per Elapsed second per Simulated User for a Sun 4/490

N
\

_mi

0 20 40 60 80 100

Simulated Users

120 140

28

B.8 DEC 6000/9000
The first DEC VAX/9000 multiprocessor with vector units running Ultrix in alpha test was
made available to us. DEC machines were available via dial-in, but the newness of this
machine also had DEC people standing over our shoulders. DEC is intensively networked,

so tape, mail or file transfers are possible.

Additionally, VAX 6000s were also tested having a lower cost, vector, and multiprocessor
options. The performance of the VAX 6000/560 was typical of the machine tested. The
price-performance then becomes a distinguishing point for machines.

A VAX-11/780 was also tested for purposes of comparison. The performance of this

graph is included at the end.

29

DEC Results

C

m

d 5.00

Commands per Elapsed second and CPU second for a DEC VAX 6530

s 4.50

/ 4.00

E 3.50 J i'''i_'-I_" _

1 3.00

a 2.50

Ps 2.oo
1.5O

d 1.00 1,a -I_
__/

0.50 i_
0.00

0 20 40 60 80 100 120

Simulated Users

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

140

C

m

d 0.2

Commands per Elapsed second per Simulated Users for a DEC 6530

s

/
E

1

a

P
s

e

d

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

in m..,m _ia _ •,..minimL

-,m

20 40 60 80 100

Simulated Users

120 140

30

C

m

d 5.00

Commands per Elapsed second and CPU second for a DEC VAX 6560

S

/

E

1

a

4.50

4.00 /

3.50

3.00

2.50
P

2.00 I==-"..._ J

eS ,/=. • • • _,=_=,_

1.50 " _ _ _.

d 1.00

0.50 _,
s 0.00

e 0 20 40 60 80

c Simulated Users

100 120

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

140

System

"'" User

C

m

d 0.20

Commands per Elapsed second per Simulated Users for a DEC 6560

S

/

E

1

a

P

S

C

d

S

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

II 1--I_ii..= _ l__ ill......,i_

0 20 40 60 80 100

Simulated Users

120 140

31

C

m

d 5.00

Commands per Elapsed second and CPU second for a DEC VAX 9210/9410

s 4.50

/ 4.00

E 3.50 J

1 3.00 Sa 2.50
P

2.00
s nm--i_ _l ...-

de lOO'5° ,\,\
0.50 m_l

s 0.00

e 0 20 40

c

60 80

Simulated Users

100 120

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

140

System

"*" User

C

m

d 0.2

Commands per Elapsed second per Simulated User for a DEC 9210/9410

s

/

E

1

a

P

S

e

d

s

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

lll--I_l _

20 40 60 80 100

Simulated Users

120 140

32

C

m

d 5.00

Commands per Elapsed second and CPU second for a DEC VAX 9420

s 4.50 --h-

/ 4.00 __1

E 3.50

1 3.00

a 2.50

eps2.001.50r""7 _'\,,.

d 1.00 _'nu_m_,

0.50
s 0.00

e 0 20 40 60 80 100 120

c Simulated Users

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

140

System

4- User

C

m

d 0.2

s 0.18

/ 0.16

E 0.14

I 0.12
a

0.1
P

0.08
s

0.06
e

d 0.04

0.02

s 0

Commands per Elapsed second per Simulated User for a DEC 9420

in m--l_u,,,..,.a_ rob.,..,,...ink.... -

trot...

_m

20 40 60 80 100

Simulated Users

120 140

33

C

m

d 5.00

Commands per CPU second and Elapsed second for a VAX 11/780

S

/

E

1

a

P

s

e

d

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

20 40 60 80 100 120

Simulated Users

140

34

Sequent Symmetry
A copy of KENBUS and our workload were given to Sequent. We never heard from them
again. Sequent has SPEC representation, and two Sequent systems are on base.

Partial ports to Cray Y-MP, BBN TC2000,
Partial MUSBUS ports without extensive work were made on available NAS machines:
SGI Iris 4D/60, 70, and 320. The Cray-2 and the Cray Y-MP were tested as far enough to
identify problems, but portability repairs were not made. A port was also tried on the BBN
TC2000 located at the Massive Parallelism Computing Institute [MPCI] at the Lawrence
Livermore National Lab [LLNL]. With some work, most ports would have run. Most

porting problems are the result of BSD/System V OS blends.

35

